
T
m

S
a

b

a

A
R
R
A
A

P
L
P
S
O
B

1

w
l
r
a
s
h
a
q
a
m
t
u
a
p
c

P
F
C

(

0
d

Journal of Power Sources 195 (2010) 2979–2988

Contents lists available at ScienceDirect

Journal of Power Sources

journa l homepage: www.e lsev ier .com/ locate / jpowsour

radeoffs between battery energy capacity and stochastic optimal power
anagement in plug-in hybrid electric vehicles�

cott J. Mouraa,∗, Duncan S. Callawayb, Hosam K. Fathya, Jeffrey L. Steina

Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
Energy and Resources Group, University of California, Berkeley, CA, United States

r t i c l e i n f o

rticle history:
eceived 27 August 2009
eceived in revised form 4 November 2009
ccepted 5 November 2009
vailable online 13 November 2009

a b s t r a c t

Recent results in plug-in hybrid electric vehicle (PHEV) power management research suggest that battery
energy capacity requirements may be reduced through proper power management algorithm design.
Specifically, algorithms which blend fuel and electricity during the charge depletion phase using smaller
batteries may perform equally to algorithms that apply electric-only operation during charge depletion
using larger batteries. The implication of this result is that “blended” power management algorithms
lug-in hybrid electric vehicles
ithium ion batteries
ower management
tochastic dynamic programming
ptimal control
attery sizing

may reduce battery energy capacity requirements, thereby lowering the acquisition costs of PHEVs. This
article seeks to quantify the tradeoffs between power management algorithm design and battery energy
capacity, in a systematic and rigorous manner. Namely, we (1) construct dynamic PHEV models with
scalable battery energy capacities, (2) optimize power management using stochastic control theory, and
(3) develop simulation methods to statistically quantify the performance tradeoffs. The degree to which
blending enables smaller battery energy capacities is evaluated as a function of both daily driving distance

tricit
and energy (fuel and elec

. Introduction

This article examines plug-in hybrid electric vehicles (PHEVs),
hich utilize onboard battery storage to displace liquid fuels with

ess expensive grid electricity. Battery sizing and design play key
oles in the cost, reliability, and ability of PHEVs to effectively man-
ge different power demand levels over the course of a diverse
et of trip durations [1]. The goal of this article is to examine the
ow PHEV operating cost is influenced by battery energy capacity
nd power management algorithm design. We specifically focus on
uantifying the extent to which different PHEV power management
lgorithms enable the use of smaller batteries without compro-
ising performance and efficiency. This quantification focuses on

wo power management algorithms: the first, which has been

sed in several preceding studies, minimizes fuel consumption by
ggressively depleting battery charge when it is available. As in
receding work, we will refer to this algorithm as charge-depletion-
harge-sustenance (CDCS). The second algorithm simultaneously

� Based on “Impact of Battery Sizing on Stochastic Optimal Power Management in
lug-in Hybrid Electric Vehicles”, by Scott J. Moura, Duncan. S. Callaway, Hosam K.
athy, Jeffrey L. Stein, which appeared in Proceedings of the 2008 IEEE International
onference on Vehicular Electronics and Safety, Columbus, OH, © 2008 IEEE.
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combines fuel and electricity usage to minimize total operating
costs, and as such is referred to as a “blended” approach. The
performance and efficiency characteristics of these algorithms are
compared for different battery sizes over stochastic distributions
of drive cycle trajectories and trip durations.

The hybrid electric vehicle powertrain control and design lit-
erature contains two relevant, occasionally overlapping bodies
of research: power management control design and battery siz-
ing studies. Within the power management body of research,
investigators have generally considered two types of control
algorithms: trajectory-based and static feedback-based methods.
Trajectory-based algorithms seek to synthesize optimal control
input trajectories given some knowledge of the drive cycle. Deter-
ministic dynamic programming methods require exact knowledge
of the drive cycle a priori [2–4], while model predictive control
techniques estimate drive cycle power demand online [5]. Static
feedback-based methods seek to synthesize a function that maps
the PHEV plant state variable values to the control inputs, using
heuristic rules [6,7], parametric optimization [8], or stochastic
dynamic programming [9–13], to name a few examples. It should
be noted that, with the exception of [9], these studies develop con-
trol strategies that seek to minimize gasoline consumption, rather

than total vehicle operating costs.

In the area of battery sizing, researchers often attempt to
determine the appropriate battery design parameters given some
combination of PHEV model, drive cycle, and power manage-
ment strategy. For example, in lifecycle cost/energy policy-focused

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:sjmoura@umich.edu
mailto:dcal@berkeley.edu
mailto:hfathy@umich.edu
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dx.doi.org/10.1016/j.jpowsour.2009.11.026
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Nomenclature

a error between sample and population means
b probability of error a between population and sam-

ple means
Afr PHEV front cross sectional area (m2)
C trip cost random variable (USD)
Cd PHEV air drag coefficient
F reaction force b/w sun and planet gears (N)
Fdrag viscous air drag force (N)
Froad PHEV road loads (N)
Froll rolling friction force (N)
f (x, u) PHEV dynamics function
g(x, u) cost per time step (USD s−1)
I′
M/G2 effective motor/generator 2 inertia (PHEV + M/G2)

(N m2)
J optimization objective (USD)
k discrete time index (s)
K final drive gear ratio
mcell battery cell weight (kg)
mchassis PHEV chassis weight (w/o battery pack) (kg)
mpack,nom nominal battery pack weight (kg)
mveh total PHEV weight (kg)
n number of iterations for simulation method
N optimal control problem time horizon (s)
ns number of battery pack cells configured in series per

string
np number of parallel strings in battery pack
Pbatt battery pack power demand (W)
Pchg,lim battery pack charging power limit (W)
Pdis,lim battery pack discharging power limit (W)
Pdem drive cycle power demand (W)
pijm transition probability for Markov chain model
Q battery pack charge capacity (Ah)
Qcell battery cell charge capacity (Ah)
R, S number of teeth on ring and sun gears, respectively
R battery pack internal resistance (�)
Rcell battery cell internal resistance (�)
SOC battery pack state of charge (Ah Ah−1)
Te engine torque (N m)
TM/G1 motor/generator 1 torque (N m)
TM/G2 motor/generator 2 torque (N m)
T ′

M/G2 effective motor/generator 2 torque (Road loads
+M/G2) (N m)

u PHEV control input vector
Voc battery pack open circuit voltage (V)
Voc,cell battery cell open circuit voltage (V)
v PHEV longitudinal velocity (m s−1)
Wfuel engine fuel consumption rate (g s−1)
x PHEV state variable vector

Greek letters
˛elec electricity W to MJ s−1 conversion factor
˛fuel fuel g s−1 to MJ /s−1 conversion factor(

MJ<CE:HSP SP="0.25"/>s−1

g<CE:HSP SP="0.25"/>s−1

)
ˇ energy price ratio

(
USD MJ−1

USD MJ−1

)
� discount factor
� rolling friction coefficient
� air density (kg m−3)
� cumulative density function for N(0, 1) random

variable

ωe engine crankshaft speed (rad s−1)
ωM/G1 motor/generator 1 speed (rad s−1)
ω motor/generator 2 speed (rad s−1)
M/G2

studies, researchers attempt to determine the appropriate battery
energy capacity that would render PHEVs economically competi-
tive [14,15]. In drive cycle requirement-type studies, researchers
assume knowledge of the PHEV model and power management
strategy and then calculate the required battery power and energy
requirements to complete a given drive cycle [6,16–18]. In control-
oriented battery sizing studies, researchers assume knowledge of
the PHEV model and drive cycle, and then determine the appro-
priate control strategy to complete a given drive cycle for various
battery designs [3,6,7]. One key conclusion of this literature is that
operating PHEVs in an all-electric battery depletion mode often
requires batteries with both high energy and high power charac-
teristics, thus resulting in more expensive components [6,7,16–18].
This motivates the use of smaller batteries in combination with con-
trol strategies that reduce electric power requirements by shifting
load to the combustion engine.

This article links the PHEV power management and battery siz-
ing literature by examining the influence of battery energy capacity
on the performance of optimal control strategies in a single mode
power-split PHEV. We build directly upon our previous work [9],
in which we developed PHEV models and optimal control strate-
gies using stochastic dynamic programming. In that work we found
that, for a PHEV design with a 4 kWh capacity, the optimal control
strategy blends gasoline with electric power even when the battery
state of charge is high and power demand is below the capacity of
the electric drivetrain. This result is in contrast to other PHEV power
management research [6–8], which focuses on aggressively deplet-
ing battery charge if the energy is available, and uses blending only
to reduce battery power requirements. However, the performance
differences between blending and aggressive charge depletion is
generally a strong function of battery energy capacity, drive cycle
duration, and energy purchase prices. This fact motivates the results
reported in the present article.

The original contributions of this article are three-fold. First, this
is the first study of which we are aware that examines the question
of how battery energy capacity influences optimal PHEV control
strategies. We find that a blended control strategy is particularly
effective at reducing operating costs for batteries with low energy
capacity. A consequence of this result is that fewer battery cells
are required to achieve a given cost-per-kilometer target with the
blended approach. Second, because trip length plays an important
role in determining the benefits of added battery energy capacity,
we draw upon transportation survey data to develop trip dura-
tion distributions for evaluating control strategy performance. In
general, blending provides greater performance benefits for longer
trips. Finally, we investigate how the price of fuel relative to elec-
tricity influences PHEV control strategy performance for a range of
battery sizes. We find that blending control is especially important
when fuel prices are relatively low.

The remainder of the article is organized as follows: Section 2
introduces the vehicle configuration, PHEV model, power manage-
ment algorithms, daily travel time distributions, and drive cycles.

Section 3 describes the article’s simulation approach. Section 4
presents the main results and discusses the impact of battery size,
control strategy, daily trip distance, and energy prices on oper-
ating cost and energy consumption. The article’s conclusions are
provided in Section 5.
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Table 1
PHEV model specifications.

Vehicle EPA classification Midsize Sedan
Chassis curb weight mchassis = 1320 kg

Engine Type Gasoline inline 4-cylinder
Displacement 1.5 L
Maximum power 43 kW at 4000 RPM
Maximum torque 110 N m at 4000 RPM

Motor/generators Type Permanent Magnet AC
M/G1 maximum power 15 kW at 3000–5500 RPM
M/G2 maximum power 33 kW at 1040–5600 RPM

Battery pack Cell chemistry Lithium ion
Nominal voltage 3.3 V per cell
Nominal capacity 2.3 Ah per cell
Voltage limits 2 V–3.6 V
ig. 1. The single mode power-split hybrid architecture uses a planetary gear set to
plit power amongst the engine, M/G1, and M/G2. Diagram adapted from [19].

. Model development
This article analyzes a plug-in hybrid electric vehicle model
ased upon the single mode power-split (a.k.a. parallel/series
r combined) hybrid architecture in Fig. 1. The key benefit of
he power-split design is that it possesses energy flow charac-

Fig. 2. PHEV model components and signal flow. Note that the
Battery pack nominal weight mpack,nom = 36 kg
Battery cell weight mcell = 0.07 kg

teristics of both parallel and series configurations. The parallel
flow paths include engine-to-wheels and battery-to-wheels (blue
dashed arrows), while the series flow path is from the engine-to-
battery-to-wheels (red solid arrows). The role of the planetary gear
set is to manage energy flow between these paths by transfer-
ring mechanical power between the engine, two motor/generators
(identified as M/G1 and M/G2), and the wheels [19]. An appeal-
ing result of this arrangement is that, with the appropriate control
strategy, power can be split amongst the three paths to optimize
energy consumption. The objective of the power management algo-
rithm developed in this article is to determine the optimal engine,
M/G1, and M/G2 torque inputs as a function of the PHEV states.
Here, optimality is measured with respect to expected electricity
plus gasoline expenditures. In the following subsection, we provide
a summary of the PHEV model used to develop the optimal power
management algorithms. Parameter values and specifications for
the PHEV model are provided in Table 1.

2.1. PHEV model
The PHEV model used in this article, summarized below, and
described in detail in [9], builds upon existing research on con-
ventional hybrid electric vehicles (HEVs) [2,10,11]. The vehicle
model comprises five components shown schematically in Fig. 2:

signal flow forms a state feedback control architecture.
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Table 2
Summary of PHEV model equations [9].

State variables x = [ ωe v SOC Pdem ]
T

Control inputs u = [ Te TM/G1 TM/G2 ]
T

Inertial dynamics

⎡
⎢⎣

Ie 0 0 R + S

0 IM/G1 0 −S

0 0 I′
M/G2

−R

−(R + S) S R 0

⎤
⎥⎦

⎡
⎢⎣

ω̇e

ω̇M/G1

ω̇M/G2

F

⎤
⎥⎦ =

⎡
⎢⎣

Te

TM/G1

T ′
M/G2

0

⎤
⎥⎦

I′
M/G2

= IM/G2 + (Iw + mvehr2
tire

)/K2

T ′
M/G2

= TM/G2 − Froadrtire/K

mveh = mchassis + mpack,nom + mcellnsnp

Road loads Froad = Froll + Fdrag

Froll = �mvehg

Fdrag = 0.5�AfrCdv2

Battery SOC dynamics ˙SOC =
Voc(SOC)−

√
Voc(SOC)2−4PbattR

2QR

Pbatt = TM/G1ωM/G1�
kM/G1

M/G1
+ TM/G2ωM/G2�

kM/G2

M/G2
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vidually. We will use this fact to avoid the need to specify the
cell architecture. As a result, this study considers the PHEVs with
the battery energy capacities and vehicle curb weights described
in Table 3. Although packaging, pack voltage, inverter efficiency,
thermal management, charge equalization, and state of health are

Table 3
Battery pack energy capacities, no. of cells, and PHEV masses.

Energy capacity No. of Li-ion cells PHEV curb weight

2 kWh 263 cells 1374 kg
4 kWh 526 cells 1393 kg
6 kWh 789 cells 1411 kg
whe

he engine, motor/generators, planetary gear set, longitudinal vehi-
le dynamics, and battery pack. The engine and motor/generator
odels are steady-state maps that respectively output fuel con-

umption rate and power efficiency as functions of speed and
orque [20]. The drive cycle is modeled as a stochastic process,
hich we describe in detail in Section 2.3.1. Models for the remain-

ng components are summarized in Table 2, and can be grouped in
erms of the inertial dynamics, road loads, and battery state-of-
harge dynamics. The states for the assembled PHEV plant model
nclude engine crankshaft speed ωe, longitudinal vehicle velocity
, battery state of charge SOC, and driver power demand Pdem. The
ontrolled inputs to the plant include engine torque Te, M/G1 torque

M/G1, and M/G2 torque TM/G2. Fig. 2 shows how the state and con-
rol signals form a state feedback control loop around the PHEV

odel components, through the supervisory controller. The follow-
ng discussion provides a high-level summary of dynamic models
n Table 2; full details are available in [9].

The inertial dynamics model utilizes Euler’s Law and the kine-
atic constraints imposed by the planetary gear set to determine

he engine and motor/generator speeds [11]. Note that this model
ncludes the longitudinal vehicle dynamics through the effective
nertia I′

M/G2 and torque T ′
M/G2 on M/G2. This furnishes a combi-

ation of three ordinary differential equations and one kinematic
onstraint, which yields two independent dynamic equations for
he engine speed ωe and forward vehicle velocity v state variables,
here v is directly proportional to ωM/G2 through the tire radius

nd final drive ratio K. The road loads Froad act as resistive terms to
he forward vehicle velocity dynamics. These loads include rolling
esistance Froll and viscous air drag Fdrag.

Observe that the vehicle mass mveh is scalable with respect to
he number of cells in the Li-ion battery pack. Here, mchassis is the
HEV weight without the battery pack, mpack,nom represents the
ominal battery pack weight (e.g. packaging, thermal regulation
ardware, power electronics, etc.) and mcell is the weight of each
i-ion battery cell. As a result, the PHEV mass is an affine function
f the number of Li-ion battery cells, as shown in Table 3.
Battery pack power and energy characteristics are modeled by
epresenting each Li-ion cell as an equivalent circuit comprising
n ideal voltage source Voc,cell in series with a resistor Rcell [11,21],
here each cell has a charge capacity of Qcell. The open circuit volt-

ge is a function of battery state of charge (SOC), taken from the
{ −1 if Tiωi > 0

1 otherwise
for i = {M/G1, M/G2}

specification sheet provided by A123 Systems [22]. These equiv-
alent circuits are assembled in a series-parallel combination to
model the entire battery pack, where ns denotes the number of
cells in series per parallel string and np denotes the number of par-
allel strings. The total number of cells in the pack is nsnp. The open
circuit voltage Voc, internal resistance R, and charge capacity Q for
the entire battery pack are given by:

Voc = nsVoc,cell (1)

R = ns

np
Rcell (2)

Q = npQcell (3)

In this article, we use the parameters ns and np to scale the total
energy capacity of the PHEV battery pack. The battery pack dynam-
ics are associated with SOC, which intuitively describes a battery
“fuel gauge”. Here, we define SOC as the ratio of battery pack charge
to maximum charge capacity. Through applying power conserva-
tion on the equivalent circuit, we obtain an expression for battery
power at the terminals which may be solved in terms of SOC to
obtain the ordinary differential equation for SOC in Table 2.

Although this formulation explicitly accounts for series-parallel
cell architectures, it can be mathematically shown that, holding
nsnp constant, the SOC dynamics are invariant to ns and np indi-
8 kWh 1052 cells 1430 kg
10 kWh 1315 cells 1448 kg
12 kWh 1578 cells 1467 kg
14 kWh 1841 cells 1485 kg
16 kWh 2104 cells 1503 kg
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actors that affect the battery design process [23,24], they are not
ritical to this article’s investigation.

.2. Power management algorithm

In previous work we developed optimal PHEV power manage-
ent algorithms that minimize the combined cost of consuming

uel and electricity [9]. As in other work [2,10–13], these control
trategies are optimized subject to a stochastic model of drive cycle
ower demand (described in Section 2.3.1), rather than a specific
rive cycle known a priori. Mathematically, the optimal control
roblem is summarized by the following infinite horizon formu-

ation:

inimize J = lim
N→∞

EPdem

[
N−1∑
k=0

�kg(x(k), u(k))

]
(4)

ubject to x(k + 1) = f (x(k), u(k)) (5)

ijm = Pr (Pdem(k + 1) = i|Pdem(k) = j, v(k) = m) (6)

x ∈R4

∣∣∣∣∣∣∣∣∣

ωe,min ≤ ωe ≤ ωe,max

ωM/G1,min ≤ ωM/G1 ≤ ωM/G1,max

ωM/G2,min ≤ ωM/G2 ≤ ωM/G2,max

SOCmin ≤ SOC ≤ SOCmax

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7)

u ∈R3

∣∣∣∣∣∣∣∣∣

Te,min ≤ Te ≤ Te,max(ωe)

TM/G1,min ≤ TM/G1 ≤ TM/G1,max

TM/G2,min ≤ TM/G2 ≤ TM/G2,max

Pchg,lim(SOC) ≤ Pbatt ≤ Pdis,lim(SOC)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(8)

dem = Pe + PM/G1 + PM/G2 (9)

here (4) represents the discounted total energy consumption cost
cross an infinite horizon, averaged across the stochastic distribu-
ion of drive cycle power demand Pdem. The function g(x(k), u(k)) is
he energy consumption cost per time step k (discussed in detail in
ections 2.2.1 and 2.2.2), and � is the discount factor. The optimiza-
ion is subject to both deterministic (5) and stochastic (6) model
ynamics. The deterministic dynamics in (5) refer to the dynamic
HEV model described in Section 2.1. The stochastic dynamics (6)
ake the form of a first order Markov chain, described in full detail
n Section 2.3.1. The set constraints of (7) and (8) represent the
ets of admissible state and control values, respectively. These con-
traints generally represent actuator and state variable saturation
imits (see [9] for details). The equality constraint in (9) is a power
onservation constraint that sets the total power generated from
ach source equal to the drive cycle power demand. This constraint
nsures the problem is well-posed in the sense that it eliminates
he trivial solution of providing zero engine and electric power to

inimize energy consumption cost.
Within this framework, we developed two separate control

trategies, “blended” and “charge depletion, charge sustenance”
CDCS) in [9]. For completeness of presentation, we summarize
hese strategies here, which have the following definitions for the
ost-per-time-step function g(x, u).

.2.1. Blended
The blended approach minimizes a weighted sum of fuel con-

umption and electric energy consumption
(x, u) = ˇ˛fuelWfuel + ˛elec
1

�grid
Pbatt (10)

here the first term represents the fuel consumption cost and the
econd term represents grid electricity consumption cost.
urces 195 (2010) 2979–2988 2983

The weighting parameter ˇ is a tunable variable that enables
us to emphasize the relative importance of consuming fuel over
electricity. In [9], we proposed an economic interpretation of this
variable by applying the following definition:

ˇ = USD Price of Gasoline per MJ
USD Price of Grid Electricity per MJ

(11)

which we refer to as the “energy price ratio”. For the initial set of
results in this article we assume a fuel price ratio of ˇ = 0.8, which
corresponds to 2.76 USD per gallon of fuel, and 0.10 USD per kWh of
grid electricity [25]. We will also report on the sensitivity of PHEV
performance to shifts in the energy price ratio in Section 4.4.

The remainder of the variables in (10) have the following defini-
tions: the conversion factors ˛fuel and ˛elec are selected to convert
energy consumption from each source to common units of MJ per
time step. The symbol Wfuel is the fuel consumption rate in terms
of grams per time step, and Pbatt is power flow through the battery,
which can be calculated from the battery pack open-circuit voltage,
charge capacity, and ˙SOC according to

Pbatt = −VocQ ˙SOC (12)

Note that Pbatt is positive for discharge events and negative for
regeneration events. Hence, there exists a reward for regeneration
that offsets the need to consume grid electricity. We estimate the
electric energy consumed from the grid during the recharge process
by dividing Pbatt by a constant power electronics charging efficiency
�grid = 0.98.

2.2.2. Charge depletion, charge sustenance
It is common in PHEV power management research to use con-

trol laws that first prioritize battery energy consumption, until
they enter a charge sustenance mode like those used by conven-
tional HEVs [6–8]. This method, which we shall refer to as charge
depletion, charge sustenance (CDCS), is implemented in the SDP
framework here by setting ˛elec in (10) equal to zero. This formu-
lation penalizes the consumption of fuel only, therefore causing
the power management algorithm to deplete electricity whenever
possible. If the electric machines are capable of meeting the peak
power demand of a given drive schedule, this formulation will pro-
duce an all-electric range during charge depletion. If the electric
machines cannot meet power demand or sufficient SOC does not
exist in the battery, then the CDCS algorithm requests engine power
to satisfy drive cycle power demand. When the battery reaches a
minimum SOC level, the inequality SOCmin ≤ SOC in the set con-
straint (7) forces the engine to provide power to sustain battery
charge. This constraint, which is implemented as a quadratic satu-
ration term, produces a charge sustenance mode that is equivalent
to the implementation in [2].

2.3. Stochastic drive cycle model

The power management algorithm developed in the previous
section is optimized with respect to a stochastic model of drive
cycle behavior. In this article, the stochastic drive cycle model is
used for control design (it defines the transition probabilities pijm

in Eq. (6)), as well as for simulating closed-loop PHEV performance
characteristics. These simulations are augmented with a daily trip
duration model that simulates the distribution of PHEV driving time
between charging events (we assume that charging occurs only
once per day). The following two sections discuss these models.
2.3.1. Markov chain model for drive cycle dynamics
We model drive cycle trajectories by the following first order

Markov chain in (6) and repeated here for ease of reference,

pijm = Pr(Pdem(k + 1) = i|Pdem(k) = j, v(k) = m) (13)
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distribution function (cdf), we compute the cdf and attenuate the

F

ig. 3. Estimated drive cycle power demand transition probabilities for a vehicle
elocity of 16 m s−1.

here power demand Pdem is the Markov state variable, and pijm is
he probability of power demand transitioning to level i in the next
ime step, given Pdem = j and v = m in the current time step. This
pproach to modeling drive cycle trajectories is used widely in the
ybrid vehicle power management literature [2,9–13]. The transi-
ion probabilities for the Markov chain given by (13) are determined
sing a maximum-likelihood estimator [26] from observation data
ollected from federal drive cycles (FTP-72, HWFET, US06) and
eal-world micro-trips (WVUCITY, WVUSUB, WVUINTER) in the
DVISOR database [20]. Although the use of federal drive cycles is
tandard for control design and simulation, models based on nat-
ralistic data would improve the approach. An effort to develop
uch models is currently underway [18] and could be easily applied
o this work when complete. Fig. 3 provides an illustration of the
stimated transition probabilities in the Markov chain model, for
vehicle velocity of 16 m s−1. The diagonally dominant structure

f the transition probabilities occurs due to the fact that power
emand levels separated by one time step are highly correlated.
ut simply, if the vehicle is experiencing some power demand level
n the current time step, it is likely to experience a similar power
emand level in the next time step.
The observation cycles and a sample randomly generated drive
ycle are shown in Fig. 4. The observation cycles and randomly
enerated cycle produce similar characteristics. For example, the
bservation cycles and random cycle in Fig. 4 demonstrate average

ig. 4. (a) Observation cycles, stacked back-to-back, used to generate the Markov chain m
Fig. 5. Distribution of daily vehicle travel times from 2001 National Household
Transportation Survey [28].

velocities of 11.7 m s−1 and 15.8 m s−1, and maximum velocities of
35.9 m s−1 and 34.1 m s−1, respectively.

Note that by proposing a first-order Markov chain, we assume
that the drive cycles satisfy the Markov property. That is, the current
state is conditioned only on the state immediately preceding it. We
validated this assumption by (i) computing the residuals between
the model and observation cycles, and then (ii) confirming that the
autocorrelation of the residuals exceeds the 95% confidence interval
for no more than 5% of all lag values—as is the case for a white noise
process. This test confirms, statistically, that the drive cycles indeed
satisfy the Markov property [27].

2.3.2. Trip duration model
We model trip duration as a random variable, whose distri-

bution gives the total travel time for a vehicle during a single
day, which we treat as the travel time between PHEV charging
events. In this article, we construct the trip duration model from
the 2001 National Household Travel Survey (NHTS) data conducted
by the Department of Transportation Federal Highway Administra-
tion [28]. Fig. 5 shows the distribution of surveyed daily vehicle
travel times, for which the mean is approximately 35 min and 75%
of daily travel occurs in 32 min or less. The likely cause of the data’s
multi-modality is a tendency among survey participants to report
trip duration in 5 min increments. Since our intent is to randomly
generate trip durations by inverting the trip duration cumulative
modes with a 5 min, uniformly weighted moving average in Fig. 6.
Note that although we consider the NHTS data in this article, one
can apply the same modeling process with any distribution of daily
vehicle travel duration. Also, it is important to note that the trip

odel. (b) Sample random drive cycle generated from the Markov chain model.
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uration model is not used during the control design process—only
or closed-loop simulation and analysis.

. Simulation method

Distributions for the PHEV performance characteristics are cal-
ulated by simulating each control strategy (Blended and CDCS)
nd battery size (Table 3) configuration over the entire distribution
f trip duration and drive cycles. For each battery size option, we
dentify both a blended and CDCS control law (as explained in Sec-
ion 2.2 and [9]). We then evaluate the performance of the control
aw/battery size combination by the following approach:

. Generate optimal control strategies for varying battery sizes (and
corresponding vehicle weights) and energy price ratios, subject
to the model described in (13).

. Generate random daily drive cycles:
(a) Random duration—NHTS cdf shown in Fig. 6.
(b) Random velocity profile—Markov chain model.

. Simulate the closed loop PHEV model across the distribution of
random drive cycles, generated in step 2.
. Record the distribution of performance characteristics.

. Repeat steps 1-4 across a range of energy price ratios.

Step 5, which obtains performance characteristics across a range
f energy price ratios, furnishes the data presented in Section 4.4.

Fig. 7. Engine operating points for the (a) blended and (b) CDCS strategies on a brake
urces 195 (2010) 2979–2988 2985

4. Results and discussion

The results from the simulation method described in the pre-
vious section enable us to analyze the coupling between battery
size and control strategy. Specifically, our aim is to quantify how
control strategy choice enables the use of smaller battery sizes, in
terms of both operating cost and energy consumption. To facilitate
this analysis, we first discuss the fundamental differences between
the control strategies under investigation: blending and CDCS. Sec-
ondly, we analyze the coupling of control strategy and battery
energy capacity in terms of two PHEV performance metrics: oper-
ating cost and energy consumption. Third, we consider how daily
driving duration (that is, the driving time between PHEV recharge
events), affects PHEV performance. Finally, Section 4 closes with
an analysis of control strategy/battery size coupling as a function
of the energy price ratio.

4.1. Control strategies

The key advantage of blending relative to CDCS is blending
reduces the time spent in costly charge sustenance mode. This
property can be understood by examining the engine operating
points on a brake specific fuel consumption map for each strategy,
shown in Fig. 7.

In a power-split architecture the engine is decoupled from the
wheel, which enables the electric machines to move the engine
operating point to regions where fuel efficiency is maximized. The
optimal operating line is identified by the dashed black line in
Fig. 7. During charge depletion, blending operates at low speeds
near the optimal operating line. This strategy applies non-zero
engine torque even when power demand can be met by the elec-
tric machines alone, where the excess power goes to regenerating
battery charge, which the blended cost function (10) rewards. Once
the vehicle enters charge sustenance phase, the electric machines
are generally not saturated and thus free to maintain engine at
relatively low speeds and high fuel efficiency.

In contrast, the CDCS approach applies zero engine torque dur-
ing charge depletion, where fuel consumption is low but so is
fuel efficiency. Upon entering charge sustenance, engine power is
requested only when the electric machines saturate. During these
periods, the electric machines lose control authority to move the

engine operating point to the optimal operating line. The impact of
these characteristics is that charge sustenance becomes extremely
expensive, since it limits the power-split architecture’s key advan-
tage. That is, it disallows decoupling between the wheels and driver
power demand.

specific fuel consumption map, for two FTP-72 cycles simulated back-to-back.
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Fig. 8. Box and whisker plots of (a) operating cost (USD per 100 km) and (b) energy
consumption (MJ per 100 km) distributions for each battery size and control strat-
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The range of battery energy capacity for which blending provides
gy configuration. The symbol (×) denotes the average value of each distribution.
hisker lengths are limited to 1.5 times the interquartile range.

.2. Operating cost and energy consumption

Fig. 8(a) and (b) respectively depict the distributions of operat-
ng cost (USD per 100 km) and energy consumption (MJ per 100 km)
cross a range of battery energy capacities. The operating cost
ncludes both the cost of fuel from the pump, and electricity from
he grid necessary to recharge the battery to its initial SOC level.
he distributions are represented by box and whisker plots, where
he (×) symbol denotes the distribution average and the whiskers
re limited to 1.5 times the interquartile range.

For each battery size we observe that the distribution of oper-
ting costs and energy consumption for the blended strategy is
onsistently better or approximately equal to the CDCS distribu-
ions. Moreover, the advantages of blending appear to be more
ronounced as battery energy capacity decreases. This can be
xplained by noting that as battery energy capacity decreases, the
robability of fully depleting the battery on a given trip increases
or either strategy. This fact is important because, as discussed in
9], blending’s key advantage is that it increases the time required
o fully deplete the battery. This reduces the time spent in costly
harge sustenance mode, where the engine is forced out of its sweet
pot in order to satisfy drive cycle power demand and regulate the
attery SOC. Since the two strategies are roughly cost-equivalent
uring the charge depletion phase, the differences between them
re most prevalent on cycles that force CDCS into charge sustenance
ode for a significant period of time. In contrast, for large bat-

ery energy capacities, the percentage of trips which fully deplete

he battery is relatively small for either strategy. Hence, the two
trategies produce almost equivalent performance characteristics
or large battery energy capacities.
Fig. 9. Average operating cost (USD per 100 km) for varying daily trip distances and
battery energy capacities, for the blended strategy.

These results are in agreement with prior claims that a blended
strategy should enable the use of smaller batteries [6,7,16],
although in this case the result applies to battery energy capacity,
whereas the prior claims are predominantly in reference to battery
power capacity. Moreover, this work justifies those claims in a more
rigorous manner by developing blending strategies through opti-
mal control theory. Furthermore, the differences between blending
and CDCS are evaluated across a distribution of drive cycle behavior
and daily trip times, instead of fixed drive cycles.

4.3. Impact of varying daily trip distance

This section focuses on the performance of both control strate-
gies across varying daily trip lengths. Namely, we seek to answer
the following two questions: (1) Given a fixed daily trip distance,
what battery capacity minimizes energy costs? (2) For what range
of trip distances does blending provide the greatest improvements
over CDCS? The simulation framework used to answer these ques-
tions has one important difference with the preceding section:
random drive cycles are simulated for a finite set of trip distances,
as opposed to randomly sampled daily trip durations from the dis-
tribution described in Section 2.3.2.

Given a finite set of trip distances, the average operating cost as
a function of battery energy capacity is demonstrated in Fig. 9, for
the blended control strategy. Note that the average is taken over a
set of random drive cycles generated by the Markov chain in Section
2.3.1 (where the simulation is terminated at the specified distance).
For each trip distance, operating cost performance is a convex func-
tion of battery energy capacity. That is, performance decreases as
battery energy capacity increases, up to a critical energy capacity.
Beyond this energy capacity, operating cost increases slightly with
storage capacity. This slight increase is because vehicle efficiency
declines with added battery weight, which is essentially unused for
the given trip distance.

The results analyzed in the preceding paragraph can also be
leveraged to investigate the relative advantages of blending over
CDCS across varying daily trip distances. Fig. 10 provides the
percentage improvement in average operating cost performance
of applying a blended strategy over CDCS. In general, blending
demonstrates the greatest improvements for small battery energy
capacities and long trips—up to 5%. This is because blending rations
electric energy storage rather than applying aggressive depletion.
an advantage over CDCS increases as trip distance increases. How-
ever, beyond a certain battery size, there is a small probability that
either strategy will fully deplete the battery and therefore differ-
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ig. 10. Impact of daily trip distance on operating cost savings of applying a blended
trategy relative to CDCS.

nces between blended control and CDCS are small. In fact, for
arge batteries blending provides slightly worse performance than
DCS because blending applies more engine power during charge
epletion to conserve electric energy. Nevertheless, Fig. 10 is useful
or understanding the ranges of trip distances and battery energy
apacities where blending provides significant benefits over the
tandard CDCS control strategy.

.4. Impact of varying energy prices

To this point we have reported results corresponding to an
nergy price ratio of ˇ = 0.8 (equivalent to the gasoline price per
allon being 27.6 times the electricity price per kWh—for example,
.76 USD per gallon of fuel and 0.10 USD per kWh of electricity).
his parameter is explicitly accounted for in both the control design
rocedure and simulation results. However, this value varies both
emporally (e.g., by year) and spatially (e.g., by geographic region).
o highlight the volatility of this parameter, consider the history
f average energy price ratios in the United States since 1973 [25],
hown in Fig. 11. The value of ˇ has clearly changed significantly
ver the past 35 years due to shifts in both oil and electricity prices.
his motivates the need to understand how this parameter impacts
he interdependency of optimal power management and battery
nergy capacity.

Consider the operating cost savings (given in terms of percent-

ge) of applying a blended strategy over CDCS in Fig. 12. Since the
roposed simulation method produces a distribution of operating
ost savings for each energy price ratio, Fig. 12 provides the average
alues calculated across all the drive cycles.

ig. 11. Historic values for the energy price ratio ˇ from 1973 to 2007 [25]. Note
ow the variation corresponds with shifts in oil and electricity prices.
Fig. 12. Impact of energy price ratio on operating cost savings of applying a blended
strategy relative to CDCS. Recall the definition of energy price ratio provided in (11).

Two key observations are made from the results depicted in
Fig. 12. First, the benefits of blending over CDCS is more signifi-
cant for smaller battery energy capacities, across all values of the
energy price ratio. This result matches the trends identified in the
previous section and quantifies the benefits across varying energy
price ratios. Secondly, the benefits of applying a blended strategy
over CDCS become notably more significant for smaller values of
ˇ, i.e. as fuel becomes less expensive relative to fixed electricity
prices. This result makes intuitive sense for the following reason:
recall that the blended approach explicitly accounts for the cost
of fuel and electricity, and therefore optimally mixes these energy
sources in a manner that minimizes total energy consumption
costs. In the case of decreasing values for the energy price ratio,
blending utilizes increasing amounts of engine power and fuel. As
a result, the optimal fuel/electricity mix deviates further from the
CDCS strategy, which always attempts to consume electric battery
energy first. The final result is that blending produces significantly
lower operating cost values relative to CDCS for small energy price
ratios.

5. Conclusion

This article introduced a method for evaluating the relationships
between power management strategies, battery energy capacity,
daily trip distance, and energy prices in PHEVs over a distribution of
drive cycle behavior and daily travel time. Through this framework,
we have demonstrated several results for the single mode power
split vehicle architecture. The first of these is that a blended control
strategy facilitates the use of smaller batteries for a given oper-
ating cost or energy consumption level. We have also shown that
expected operating cost and energy consumption approach asymp-
totic values as battery size increases, since a very small population
of drivers will fully deplete large batteries in one day. Moreover,
the benefits of blending over CDCS become more significant as trip
distances increase and the energy price ratio decreases. Finally,
for the case of large battery energy capacities, short trip distances,
and large energy price ratio values, there exists a small penalty for
applying a blended strategy over CDCS that is offset once the PHEV
enters charge sustenance mode.
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